Adicione uma linha de tendência ou média móvel a um gráfico Aplica-se a: Excel 2016 Word 2016 PowerPoint 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 Mais. Menos Para mostrar tendências de dados ou médias móveis em um gráfico que você criou. Você pode adicionar uma linha de tendência. Você também pode ampliar uma linha de tendência além de seus dados reais para ajudar a prever os valores futuros. Por exemplo, a seguinte linha de tendência linear prevê dois trimestres à frente e mostra claramente uma tendência ascendente que parece promissora para futuras vendas. Você pode adicionar uma linha de tendência a um gráfico 2-D que não está empilhado, incluindo área, barra, coluna, linha, estoque, dispersão e bolha. Você não pode adicionar uma linha de tendência a um gráfico empilhado, 3-D, radar, torta, superfície ou filhós. Adicione uma linha de tendência No seu gráfico, clique na série de dados para a qual deseja adicionar uma linha de tendência ou média móvel. A linha de tendência começará no primeiro ponto de dados da série de dados que você escolher. Verifique a caixa Trendline. Para escolher um tipo diferente de linha de tendência, clique na seta ao lado de Trendline. E depois clique em Exponencial. Previsão linear. Ou a média móvel de dois períodos. Para linhas de tendência adicionais, clique em Mais opções. Se você escolher Mais opções. Clique na opção desejada no painel Format Trendline em Trendline Options. Se você selecionar Polinômio. Insira a maior potência para a variável independente na caixa Ordem. Se você selecionar Moeda em Movimento. Insira o número de períodos a serem usados para calcular a média móvel na caixa Período. Dica: uma linha de tendência é mais precisa quando seu valor R-quadrado (um número de 0 a 1 que revela quão íntimo os valores estimados para a linha de tendência correspondem aos seus dados reais) é em ou próximo de 1. Quando você adiciona uma linha de tendência aos seus dados , O Excel calcula automaticamente o valor R-squared. Você pode exibir esse valor em seu gráfico, verificando o valor Exibir R-quadrado na caixa de gráfico (Formato do painel Trendline, Opções da Tendência). Você pode aprender mais sobre todas as opções de linha de tendência nas seções abaixo. Linha de tendência linear Use este tipo de linha de tendência para criar uma linha reta de melhor ajuste para conjuntos de dados lineares simples. Seus dados são lineares se o padrão em seus pontos de dados parecer uma linha. Uma linha de tendência linear geralmente mostra que algo está aumentando ou diminuindo a uma taxa constante. Uma linha de tendência linear usa essa equação para calcular os mínimos quadrados adequados para uma linha: onde m é a inclinação e b é a intercepção. A linha de tendência linear a seguir mostra que as vendas de refrigeradores aumentaram consistentemente ao longo de um período de 8 anos. Observe que o valor do R-quadrado (um número de 0 a 1 que revela o quão próximo os valores estimados para a linha de tendência correspondem aos seus dados reais) é 0.9792, o que é um bom ajuste da linha para os dados. Mostrando uma linha curvada de melhor ajuste, esta linha de tendência é útil quando a taxa de alteração nos dados aumenta ou diminui rapidamente e depois desacelera. Uma linha de tendência logarítmica pode usar valores negativos e positivos. Uma linha de tendência logarítmica usa essa equação para calcular os mínimos quadrados que se encaixam nos pontos: onde c e b são constantes e ln é a função de logaritmo natural. A seguinte linha de tendência logarítmica mostra o crescimento populacional previsto de animais em uma área de espaço fixo, onde a população se estabilizou à medida que o espaço para os animais diminuiu. Observe que o valor R-quadrado é 0.933, que é um ajuste relativamente bom da linha para os dados. Esta linha de tendência é útil quando seus dados flutuam. Por exemplo, quando você analisa ganhos e perdas em um grande conjunto de dados. A ordem do polinômio pode ser determinada pelo número de flutuações nos dados ou por quantas curvas (colinas e vales) aparecem na curva. Normalmente, uma linha de tendência polinomial da Ordem 2 tem apenas uma colina ou vale, uma Ordem 3 tem uma ou duas colinas ou vales, e uma Ordem 4 tem até três colinas ou vales. Uma linha de tendência polinomial ou curvilínea usa esta equação para calcular os mínimos quadrados que se encaixam nos pontos: onde b e são constantes. A linha de tendência polinomial da ordem 2 (uma colina) mostra a relação entre velocidade de condução e consumo de combustível. Observe que o valor R-squared é 0.979, que é próximo de 1, de modo que as linhas são adequadas aos dados. Mostrando uma linha curva, esta linha de tendência é útil para conjuntos de dados que comparam medidas que aumentam a uma taxa específica. Por exemplo, a aceleração de um carro de corrida em intervalos de 1 segundo. Você não pode criar uma linha de tendência de energia se seus dados contiverem valores zero ou negativos. Uma linha de tendência de energia usa essa equação para calcular os mínimos quadrados que se encaixam nos pontos: onde c e b são constantes. Nota: Esta opção não está disponível quando os dados incluem valores negativos ou nulos. O gráfico de medidas de distância a seguir mostra a distância em metros por segundos. A linha de tendência de energia demonstra claramente a crescente aceleração. Observe que o valor R-squared é 0.986, que é um ajuste quase perfeito da linha para os dados. Mostrando uma linha curva, esta linha de tendência é útil quando os valores de dados aumentam ou caem a taxas cada vez maiores. Você não pode criar uma linha de tendência exponencial se seus dados contiverem valores zero ou negativos. Uma linha de tendência exponencial usa esta equação para calcular os mínimos quadrados que se encaixam nos pontos: onde c e b são constantes e e é a base do logaritmo natural. A seguinte linha de tendência exponencial mostra a quantidade decrescente de carbono 14 em um objeto à medida que envelhece. Observe que o valor R-quadrado é 0.990, o que significa que a linha se encaixa perfeitamente nos dados. Tendência média média Esta linha de tendência eleva as flutuações nos dados para mostrar um padrão ou tendência com mais clareza. Uma média móvel usa um número específico de pontos de dados (definido pela opção Período), os em média e usa o valor médio como um ponto na linha. Por exemplo, se o Período for definido como 2, a média dos dois primeiros pontos de dados é usada como o primeiro ponto na linha de tendência média móvel. A média do segundo e terceiro pontos de dados é usada como o segundo ponto na linha de tendência, etc. Uma linha de tendência média móvel usa essa equação: O número de pontos em uma linha de tendência média móvel é igual ao número total de pontos da série, menos a Número que você especificou para o período. Em um gráfico de dispersão, a linha de tendência é baseada na ordem dos valores de x no gráfico. Para obter um resultado melhor, classifique os valores x antes de adicionar uma média móvel. A seguinte linha de tendência média móvel mostra um padrão no número de casas vendidas ao longo de um período de 26 semanas. Como outros mencionaram, você deve considerar um filtro IIR (resposta de impulso infinito) em vez do filtro FIR (filtro de resposta finito) que você está usando agora. Há mais, mas à primeira vista os filtros FIR são implementados como convoluções explícitas e filtros IIR com equações. O filtro IIR particular que eu uso muito em microcontroladores é um filtro passa-baixa de um único pólo. Este é o equivalente digital de um simples filtro analógico R-C. Para a maioria dos aplicativos, estes terão melhores características do que o filtro de caixa que você está usando. A maioria dos usos de um filtro de caixa que eu encontrei são resultado de alguém que não presta atenção na classe de processamento de sinal digital, não como resultado de precisar de suas características particulares. Se você quiser apenas atenuar as altas freqüências que você conhece são ruídos, um filtro passa-baixa de um único pólo é melhor. A melhor maneira de implementar um digitalmente em um microcontrolador é geralmente: FILT lt-- FILT FF (NEW-FILT) FILT é um pedaço de estado persistente. Esta é a única variável persistente que você precisa para calcular este filtro. NOVO é o novo valor que o filtro está sendo atualizado com esta iteração. FF é a fração do filtro. Que ajusta o peso do filtro. Olhe para este algoritmo e veja que para FF 0 o filtro é infinitamente pesado, já que a saída nunca muda. Para FF 1, realmente não há nenhum filtro, já que a saída apenas segue a entrada. Os valores úteis estão no meio. Em sistemas pequenos, você escolhe FF para ser 12 N, de modo que o multiplica por FF pode ser realizado como uma mudança direta por N bits. Por exemplo, FF pode ser 116 e multiplicar por FF, portanto, uma mudança direta de 4 bits. Caso contrário, este filtro precisa apenas de uma subtração e de um som, embora os números geralmente sejam mais amplos do que o valor de entrada (mais na precisão numérica em uma seção separada abaixo). Normalmente, tomo as leituras do AD significativamente mais rápidas do que são necessárias e aplico dois desses filtros em cascata. Este é o equivalente digital de dois filtros R-C em série e atenua 12 dBoctave acima da frequência de rolagem. No entanto, para as leituras de AD, geralmente é mais relevante olhar para o filtro no domínio do tempo, considerando sua resposta passo a passo. Isso indica o quão rápido o sistema verá uma mudança quando a coisa que você está medindo muda. Para facilitar a concepção desses filtros (o que significa apenas escolher FF e decidir quantos deles entrar em cascata), uso o meu programa FILTBITS. Você especifica o número de bits de mudança para cada FF na série de filtros em cascata, e ele calcula a resposta de passo e outros valores. Na verdade, eu costumo executar isso através do meu script wrapper PLOTFILT. Isso executa FILTBITS, que faz um arquivo CSV e, em seguida, traça o arquivo CSV. Por exemplo, aqui é o resultado do PLOTFILT 4 4: os dois parâmetros para PLOTFILT significam que haverá dois filtros em cascata do tipo descrito acima. Os valores de 4 indicam o número de bits de mudança para realizar o multiplicar pelo FF. Os dois valores FF são, portanto, 116 neste caso. O rastreamento vermelho é a resposta do passo da unidade, e é o principal aspecto a ser observado. Por exemplo, isso indica que, se a entrada muda instantaneamente, a saída do filtro combinado será fixada em 90 do novo valor em 60 iterações. Se você se preocupa com 95 horas de colonização, então você precisa esperar cerca de 73 iterações e por 50 horas de reposição apenas 26 iterações. O traço verde mostra a saída de um único pico de amplitude total. Isso dá uma idéia da supressão de ruído aleatória. Parece que nenhuma amostra única causará mais de 2,5 mudanças na saída. O traço azul é dar uma sensação subjetiva do que este filtro faz com o ruído branco. Este não é um teste rigoroso, uma vez que não há garantia de que exatamente o conteúdo era dos números aleatórios escolhidos como entrada de ruído branco para esta corrida de PLOTFILT. É só dar-lhe uma sensação áspera de quanto ele será esmagado e quão suave é. PLOTFILT, talvez FILTBITS, e muitas outras coisas úteis, especialmente para o desenvolvimento de firmware PIC, estão disponíveis na versão do software PIC Development Tools na minha página de downloads de software. Adicionado sobre a precisão numérica que vejo a partir dos comentários e agora uma nova resposta que tem interesse em discutir o número de bits necessários para implementar este filtro. Observe que o Multiply by FF criará novos bits do Log 2 (FF) abaixo do ponto binário. Em sistemas pequenos, FF é geralmente escolhido para ser 12 N, de modo que esse multiplicação seja efetivamente realizado por uma mudança direta de N bits. FILT é, portanto, geralmente um inteiro de ponto fixo. Observe que isso não altera nenhuma das matemáticas do ponto de vista dos processadores. Por exemplo, se você estiver filtrando as leituras de AD de 10 bit e N 4 (FF 116), então você precisa de 4 bits de fração abaixo das leituras de AD inteiras de 10 bits. A maioria dos processadores, você estará fazendo operações inteiras de 16 bits devido às leituras AD de 10 bits. Nesse caso, você ainda pode fazer exatamente as mesmas operações de inteiro de 16 bits, mas comece com as leituras de AD esquerda deslocadas em 4 bits. O processador não conhece a diferença e não precisa. Fazer matemática em inteiros inteiros de 16 bits funciona se você considera que eles são 12.4 pontos fixos ou verdadeiros inteiros de 16 bits (16.0 ponto fixo). Em geral, você precisa adicionar N bits cada pólo de filtro se você não deseja adicionar ruído devido à representação numérica. No exemplo acima, o segundo filtro de dois teria que ter 1044 18 bits para não perder informações. Na prática, em uma máquina de 8 bits que significa que você use valores de 24 bits. Tecnicamente, apenas o segundo pólo de dois precisaria do valor mais amplo, mas, para a simplicidade do firmware, costumo usar a mesma representação e, assim, o mesmo código, para todos os pólos de um filtro. Geralmente eu escrevo uma sub-rotina ou macro para executar uma operação de polio de filtro, depois aplique isso a cada pólo. Se uma sub-rotina ou macro depende se os ciclos ou a memória do programa são mais importantes nesse projeto específico. De qualquer forma, eu uso algum estado de rascunho para passar NOVO no subroutinemacro, que atualiza FILT, mas também carrega isso no mesmo estado de rascunho NOVO estava dentro. Isso facilita a aplicação de vários pólos desde que o FILT atualizado de um pólo é o NOVO Do próximo. Quando uma sub-rotina, é útil ter um ponteiro apontar para FILT no caminho, que é atualizado logo após FILT no caminho de saída. Dessa forma, a sub-rotina atua automaticamente em filtros consecutivos na memória se for chamado várias vezes. Com uma macro, você não precisa de um ponteiro, pois você passa no endereço para operar em cada iteração. Exemplos de código Aqui está um exemplo de uma macro como descrito acima para um PIC 18: E aqui está uma macro semelhante para um PIC 24 ou dsPIC 30 ou 33: Ambos esses exemplos são implementados como macros usando o meu pré-processador PIC assembler. Que é mais capaz do que qualquer uma das instalações de macro incorporadas. Clabacchio: Outro problema que eu deveria ter mencionado é a implementação do firmware. Você pode escrever uma sub-rotina de filtro passa-baixa de um único pó uma vez, depois aplicá-la várias vezes. Na verdade, geralmente escrevo uma sub-rotina para levar um ponteiro na memória para o estado do filtro, então, avance o ponteiro para que possa ser chamado sucessivamente de forma fácil para realizar filtros multipolar. Ndash Olin Lathrop 20 de abril 12 às 15:03 1. Muito obrigado por suas respostas - todos eles. Eu decidi usar este Filtro IIR, mas este Filtro não é usado como um Filtro LowPass Padrão, pois eu preciso usar os Valores de Contador médios e compará-los para detectar Mudanças em um determinado intervalo. Uma vez que estes valores são de dimensões muito diferentes dependendo do hardware que eu queria tomar uma média para poder reagir automaticamente a essas mudanças específicas de hardware. Ndash sensslen 21 de maio 12 às 12:06 Se você pode viver com a restrição de um poder de dois itens a média (ou seja, 2,4,8,16,32 etc.), então a divisão pode ser feita com facilidade e eficiência em uma Micro de baixo desempenho sem divisão dedicada porque pode ser feito como uma mudança de bit. Cada turno para a direita é um poder de dois, por exemplo: O OP pensou que ele tinha dois problemas, dividindo-se em um PIC16 e memória para o buffer de anel. Esta resposta mostra que a divisão não é difícil. É certo que não aborda o problema da memória, mas o sistema SE permite respostas parciais, e os usuários podem tirar algo de cada resposta por si mesmos, ou mesmo editar e combinar as respostas de outros. Uma vez que algumas das outras respostas exigem uma operação de divisão, elas são igualmente incompletas, uma vez que não mostram como conseguir isso eficientemente em um PIC16. Ndash Martin 20 de abril 12 às 13:01 Há uma resposta para um verdadeiro filtro de média móvel (aka filtro de caixa) com menos requisitos de memória, se você não se importa com o downsampling. É chamado de filtro integrador-pente em cascata (CIC). A idéia é que você tenha um integrador que você tome diferenças em um período de tempo, e o dispositivo chave de economia de memória é que, por downsampling, você não precisa armazenar todos os valores do integrador. Ele pode ser implementado usando o seguinte pseudocódigo: seu comprimento médio móvel efetivo é decimationFactorstatesize, mas você só precisa manter em torno de amostras estadisticas. Obviamente, você pode obter um melhor desempenho se o seu estadista e decimationFactor forem poderes de 2, de modo que os operadores de divisão e restante sejam substituídos por turnos e máscaras-es. Postscript: Eu concordo com a Olin que você sempre deve considerar filtros IIR simples antes de um filtro de média móvel. Se você não precisar da freqüência-nulos de um filtro de caixa, um filtro passa-baixa de 1 pólo ou 2 pólos provavelmente funcionará bem. Por outro lado, se você estiver filtrando para fins de decimação (tomando uma entrada de alta taxa de amostragem e avaliando-a para uso por um processo de baixa taxa), um filtro CIC pode ser exatamente o que você está procurando. (Especialmente se você pode usar statesize1 e evitar o buffer de toque completamente com apenas um único valor de integrador anterior) Há uma análise aprofundada da matemática por trás do uso do filtro IIR de primeira ordem que Olin Lathrop já descreveu na troca de pilha de processamento de sinal digital (Inclui muitas imagens bonitas.) A equação para este filtro IIR é: Isto pode ser implementado usando apenas números inteiros e sem divisão usando o seguinte código (pode precisar de alguma depuração como eu estava digitando de memória.) Este filtro se aproxima de uma média móvel de As últimas K amostras, definindo o valor de alfa para 1K. Faça isso no código anterior, definindo BITS para LOG2 (K), ou seja, para K 16, defina BITS para 4, para K 4, defina BITS para 2, etc. (Verifique o código listado aqui assim que eu receber uma mudança e Edite esta resposta, se necessário.) Respondeu 23 de junho 12 às 4:04 Heres um filtro passa-baixa de um único polo (média móvel, com freqüência de corte CutoffFrequency). Muito simples, muito rápido, funciona muito bem e quase sem memória. Nota: Todas as variáveis têm um alcance além da função de filtro, exceto o passado em newInput Note: Este é um filtro de estágio único. Múltiplos estágios podem ser conectados em cascata para aumentar a nitidez do filtro. Se você usar mais de um estágio, você precisará ajustar o DecayFactor (como se relaciona com a frequência de corte) para compensar. E, obviamente, tudo que você precisa é que as duas linhas colocadas em qualquer lugar, eles não precisam de sua própria função. Este filtro possui um tempo de aceleração antes que a média móvel represente a do sinal de entrada. Se você precisar ignorar esse tempo de aceleração, basta inicializar o MovingAverage para o primeiro valor do newInput em vez de 0 e espero que o primeiro NewInput não seja um outlier. (CutoffFrequencySampleRate) tem um intervalo entre 0 e 0,5. DecayFactor é um valor entre 0 e 1, geralmente perto de 1. Os flutuadores de precisão única são bons o suficiente para a maioria das coisas, eu apenas prefiro duplas. Se você precisa ficar com números inteiros, você pode converter DecayFactor e Factor de amplitude em inteiros fracionários, nos quais o numerador é armazenado como inteiro e o denominador é uma potência inteira de 2 (para que você possa mudar de bit para a direita como o Denominador em vez de ter que dividir durante o ciclo do filtro). Por exemplo, se DecayFactor 0.99 e você deseja usar números inteiros, você pode definir o DecayFactor 0.99 65536 64881. E então, sempre que você se multiplicar pelo DecayFactor no loop do filtro, basta mudar o resultado 16. Para obter mais informações sobre isso, um excelente livro é esse Online, capítulo 19 em filtros recursivos: dspguidech19.htm PS Para o paradigma da Média em Movimento, uma abordagem diferente para definir DecayFactor e AmplitudeFactor que pode ser mais relevante para suas necessidades, digamos que você quer o anterior, cerca de 6 itens em média juntos, fazendo isso discretamente, você adicionará 6 itens e dividirá por 6, então Você pode configurar o AmplitudeFactor para 16, e DecayFactor para (1.0 - AmplitudeFactor). Respondeu 12 de maio 12 às 22:55 Todos os outros comentaram detalhadamente sobre a utilidade do IIR vs. FIR e sobre a divisão de poder de dois. Eu gostaria de dar alguns detalhes de implementação. O abaixo funciona bem em pequenos microcontroladores sem FPU. Não há multiplicação, e se você mantém N um poder de dois, toda a divisão é de um único ciclo de mudança de bits. Tampão de anel FIR básico: mantenha um buffer de execução dos últimos valores de N e uma SOM em execução de todos os valores no buffer. Cada vez que uma nova amostra vem, subtrair o valor mais antigo no buffer de SUM, substituí-lo pela nova amostra, adicionar a nova amostra a SUM e SOMN de saída. Tampão de anel IIR modificado: mantenha uma SOM executória dos últimos valores de N. Cada vez que uma nova amostra vem, SUM - SUMN, adicione a nova amostra e saia SUMN. Respondeu 28 de agosto 13 às 13:45 Se eu tiver lido você direito, você descreve um filtro IIR de primeiro ordem, o valor que você está subtraindo não é o valor mais antigo que está caindo, mas sim a média dos valores anteriores. Os filtros IIR de primeiro orden certamente podem ser úteis, mas eu não tenho certeza do que você quer dizer quando você sugere que a saída seja a mesma para todos os sinais periódicos. A uma taxa de amostragem de 10KHz, a alimentação de uma onda quadrada de 100Hz em um filtro de caixa de 20 estágios produzirá um sinal que sobe uniformemente para 20 amostras, fica alto por 30, cai uniformemente para 20 amostras e fica com baixo para 30. Uma ordem de primeira ordem Filtro IIR. Ndash supercat 28 de agosto 13 às 15:31 renderá uma onda que começa a subir bruscamente e gradualmente se nivela perto (mas não em) o máximo de entrada, então começa a cair bruscamente e gradualmente nivela perto (mas não at) o mínimo de entrada. Comportamento muito diferente. Ndash supercat 28 de agosto 13 às 15:32 Uma questão é que uma média móvel simples pode ou não ser útil. Com um filtro IIR, você pode obter um bom filtro com relativamente poucos calcs. O FIR que você descreve só pode dar-lhe um retângulo no tempo - um sinc na freq - e você pode gerenciar os lobos laterais. Pode valer a pena lançar alguns números inteiros para tornar uma boa FIR sintonizada simétrica se você pode poupar os tiques do relógio. Ndash Scott Seidman 29 de agosto 13 às 13:50 ScottSeidman: Não há necessidade de se multiplicar se um simplesmente tiver cada estágio da FIR ou produzir a média da entrada para esse estágio e seu valor armazenado anterior, e depois armazenar a entrada (se tiver O intervalo numérico, pode-se usar a soma em vez da média). Se isso é melhor do que um filtro de caixa depende do aplicativo (a resposta de passo de um filtro de caixa com um atraso total de 1 ms, por exemplo, terá um pico d2dt desagradável quando a entrada muda, e novamente 1 ms depois, mas terá o mínimo Possível ddt para um filtro com um atraso total de 1ms). Ndash supercat 29 de agosto às 15:25 Como disse mikeselectricstuff, se você realmente precisa reduzir suas necessidades de memória e você não se importa que sua resposta de impulso seja exponencial (em vez de um pulso retangular), eu iria por um filtro exponencial de média móvel . Eu os uso extensivamente. Com esse tipo de filtro, você não precisa de nenhum buffer. Você não precisa armazenar N amostras passadas. Apenas um. Então, seus requisitos de memória são reduzidos por um fator de N. Além disso, você não precisa de nenhuma divisão para isso. Somente multiplicações. Se você tem acesso à aritmética de ponto flutuante, use as multiplicações de ponto flutuante. Caso contrário, faça multiplicações inteiras e mude para a direita. No entanto, estamos em 2012 e eu recomendaria que você usasse compiladores (e MCUs) que permitem que você trabalhe com números de ponto flutuante. Além de ser mais eficiente e mais eficiente em memória (você não precisa atualizar itens em qualquer buffer circular), eu diria que também é mais natural. Porque uma resposta exponencial de impulso corresponde melhor à maneira como a natureza se comporta, na maioria dos casos. Respondeu 20 de abril 12 às 9:59 Um problema com o filtro IIR como quase tocado por olin e supercat, mas aparentemente desconsiderado por outros é que o arredondamento apresenta alguma imprecisão (e potencialmente biastruncação). Assumindo que N é um poder de dois, e apenas uma aritmética inteira é usada, a direita de mudança elimina sistematicamente os LSBs da nova amostra. Isso significa que, quanto tempo a série possa ser, a média nunca levará em consideração essa série. Por exemplo, suponha uma série que diminua lentamente (8,8,8. 8,7,7,7. 7,6,6) e assume que a média é de fato 8 no início. A amostra do punho 7 trará a média para 7, independentemente da força do filtro. Apenas para uma amostra. A mesma história para 6, etc. Agora pense no contrário. A série sobe. A média permanecerá em 7 para sempre, até que a amostra seja grande o suficiente para fazê-la mudar. Claro, você pode corrigir o viés, adicionando 12N2, mas isso realmente não resolverá o problema de precisão. Nesse caso a série decrescente permanecerá para sempre em 8 até a amostra ser 8-12 (N2). Para N4, por exemplo, qualquer amostra acima de zero manterá a média inalterada. Eu acredito que uma solução para isso implicaria manter um acumulador de LSBs perdidos. Mas eu não consegui o suficiente para ter o código pronto, e não tenho certeza de que isso não prejudicaria o poder do IIR em alguns outros casos de séries (por exemplo, se 7,9,7,9 seria médio para 8). Olin, sua cascata de dois estágios também precisaria de alguma explicação. Você quer dizer segurar dois valores médios com o resultado do primeiro alimentado no segundo em cada iteração. Qual é o benefício deste Real-Time After Hours Pre-Market News Flash Quote Summary Quote Gráficos interativos Configuração padrão Observe que, uma vez que você fizer a sua seleção, ela se aplicará a todas as futuras visitas ao NASDAQ. Se, a qualquer momento, você estiver interessado em reverter as nossas configurações padrão, selecione Configuração padrão acima. Se você tiver dúvidas ou encontrar quaisquer problemas na alteração das configurações padrão, envie um email para isfeedbacknasdaq. Confirme a sua seleção: Você selecionou para alterar sua configuração padrão para a Pesquisa de orçamento. Esta será a sua página de destino padrão, a menos que você altere sua configuração novamente ou exclua seus cookies. Tem certeza de que deseja alterar suas configurações. Temos um favor a ser solicitado. Desative seu bloqueador de anúncios (ou atualize suas configurações para garantir que o javascript e os cookies estejam habilitados), para que possamos continuar fornecendo as notícias do mercado de primeira linha E os dados que você espera esperar de nós.
No comments:
Post a Comment